2D case - Figure 12: Space variability training#
Two-parameter 2D problem with heterogeneous stiffness - Investigation of the convergence of the reduced-order model and of the evolution of the size of the reduced-order basis.
Libraries import#
import sys
import torch
import torch.nn as nn
from neurom.HiDeNN_PDE import MeshNN, NeuROM, MeshNN_2D, MeshNN_1D
import neurom.src.Pre_processing as pre
from neurom.src.PDE_Library import Strain, Stress,VonMises_plain_strain
from neurom.src.Training import Training_NeuROM_multi_level
import neurom.Post.Plots as Pplot
import time
import os
import torch._dynamo as dynamo
from importlib import reload
import tomllib
import numpy as np
import argparse
torch.manual_seed(0)
* WARNING: could not load tikzplotlib
<torch._C.Generator at 0x108df9670>
Load the config file#
Configuration_file = 'Configurations/config_2D_ROM_SV.toml'
with open(Configuration_file, mode="rb") as file:
config = tomllib.load(file)
Definition of the space domain and mechanical proprieties of the structure#
The initial Material parameters, the geometry, mesh and the boundary conditions are set.
# Overwrites the multi-level training
config["training"]["multiscl_max_refinment"] = 3
# MaxElemSize2D = config["interpolation"]["MaxElemSize2D"] = 0.5
# Material parameters definition
Mat = pre.Material( flag_lame = False, # If True should input lmbda and mu instead of E and nu
coef1 = config["material"]["E"], # Young Modulus
coef2 = config["material"]["nu"] # Poisson's ratio
)
# Create mesh object
MaxElemSize = pre.ElementSize(
dimension = config["interpolation"]["dimension"],
L = config["geometry"]["L"],
order = config["interpolation"]["order"],
np = config["interpolation"]["np"],
MaxElemSize2D = config["interpolation"]["MaxElemSize2D"]
)
Excluded = []
Mesh_object = pre.Mesh(
config["geometry"]["Name"], # Create the mesh object
MaxElemSize,
config["interpolation"]["order"],
config["interpolation"]["dimension"]
)
Mesh_object.AddBorders(config["Borders"]["Borders"])
Mesh_object.AddBCs( # Include Boundary physical domains infos (BCs+volume)
config["geometry"]["Volume_element"],
Excluded,
config["DirichletDictionryList"]
)
Mesh_object.MeshGeo() # Mesh the .geo file if .msh does not exist
Mesh_object.ReadMesh()
Mesh_object.ExportMeshVtk()
Parametric study definition#
The hypercube describing the parametric domain used for the tensor decomposition is set-up here
ParameterHypercube = torch.tensor([ [ config["parameters"]["para_1_min"],
config["parameters"]["para_1_max"],
config["parameters"]["N_para_1"]],
[ config["parameters"]["para_2_min"],
config["parameters"]["para_2_max"],
config["parameters"]["N_para_2"]]])
Initialisation of the surrogate model#
ROM_model = NeuROM( # Build the surrogate (reduced-order) model
Mesh_object,
ParameterHypercube,
config,
config["solver"]["n_modes_ini"],
config["solver"]["n_modes_max"]
)
Training the model#
ROM_model.Freeze_Mesh() # Set space mesh coordinates as untrainable
ROM_model.Freeze_MeshPara() # Set parameters mesh coordinates as untrainable
ROM_model.TrainingParameters(
loss_decrease_c = config["training"]["loss_decrease_c"],
Max_epochs = config["training"]["n_epochs"],
learning_rate = config["training"]["learning_rate"]
)
ROM_model.train() # Put the model in training mode
ROM_model = Training_NeuROM_multi_level(ROM_model,config, Mat)
# ROM_model,Mesh_object = Training_NeuROM_multi_level(ROM_model,config, Mat)
ROM_model = ROM_model[0]
Plotting area#
Reproducing figure 8, a-b-c
tikz = False
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
import matplotlib
plt.rcParams['text.usetex'] = False
Modes_flag = ROM_model.training_recap["Mode_vect"]
error = ROM_model.training_recap["Loss_vect"]
decay = ROM_model.training_recap["Loss_decrease_vect"]
threshold = config["training"]["loss_decrease_c"]
name = 'FigXa'
# plot Fig 8a
fig = plt.figure()
ax = fig.add_subplot(111)
## First curve
ax.invert_yaxis()
g1 = ax.semilogy(-torch.tensor(error), color='#d95319ff')
ax.set_ylabel(r'$ - J\left(u\left(x\right)\right)$',color='#d95319ff')
ax.tick_params(axis='y', colors='#d95319ff', which='both')
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
ax.set_xlabel(r'Epochs')
## Second curve
ax2 = ax.twinx()
g2 = ax2.plot(Modes_flag, color='#247ab5ff')
ax2.set_ylabel(r'$m$',color='#247ab5ff')
ax2.tick_params(axis='y', colors='#247ab5ff')
ax2.yaxis.set_major_locator(MaxNLocator(integer=True))
if tikz:
import tikzplotlib
tikzplotlib.save('Results/'+name+'_zoom.tex')
plt.savefig('Results/'+name+'_zoom.pdf', transparent=True, bbox_inches = "tight")
plt.show()
plt.clf()
name = 'FigXb'
# pre processing for padding and zooming on epochs after rough training during the first epochs
Zoom_depth = np.min(np.where(np.array(Modes_flag) == np.array(Modes_flag)[0]+1))
Zoom_start_index = int(np.floor(0.9*Zoom_depth))
second_stages_epochs = len(error) - len(Modes_flag)
Modes_flag.extend([Modes_flag[-1]]*second_stages_epochs)
x_indexes = np.arange(len(Modes_flag[Zoom_start_index:]))+Zoom_start_index
# plot Fig 8b
fig = plt.figure()
ax = fig.add_subplot(111)
## First curve
ax.invert_yaxis()
g1 = ax.semilogy(x_indexes,-torch.tensor(error[Zoom_start_index:]), color='#d95319ff')
ax.set_ylabel(r'$ - J\left(u\left(x\right)\right)$',color='#d95319ff')
ax.tick_params(axis='y', colors='#d95319ff', which='both')
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
ax.set_xlabel(r'Epochs')
## Second curve
ax2 = ax.twinx()
g2 = ax2.plot(x_indexes,Modes_flag[Zoom_start_index:], color='#247ab5ff')
ax2.set_ylabel(r'$m$',color='#247ab5ff')
ax2.tick_params(axis='y', colors='#247ab5ff')
ax2.yaxis.set_major_locator(MaxNLocator(integer=True))
if tikz:
import tikzplotlib
tikzplotlib.save('Results/'+name+'_zoom.tex')
plt.savefig('Results/'+name+'_zoom.pdf', transparent=True, bbox_inches = "tight")
plt.show()
plt.clf()
name = 'FigXc'
# plot Fig 8c
ax = plt.gca()
ax.semilogy(decay,color='#d95319ff')
ax.tick_params(axis='y', colors='#d95319ff')
ax.set_ylabel(r'd log($J\left(u\left(x\right)\right)$)',color='#d95319ff')
plt.axhline(threshold,color = 'k')
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
# plt.ylim((0.01,20))
ax2 = plt.gca().twinx()
ax2.plot(Modes_flag,color='#247ab5ff')
ax2.set_ylabel(r'$m$',color='#247ab5ff')
ax2.tick_params(axis='y', colors='#247ab5ff')
ax2.yaxis.set_major_locator(MaxNLocator(integer=True))
if tikz:
import tikzplotlib
tikzplotlib.save('Results/'+name+'.tex')
plt.savefig('Results/'+name+'.pdf', transparent=True, bbox_inches = "tight")
plt.show()
plt.clf()
ROM_model = ROM_model[0]
Export plot data#
The data are saved in a csv
file so that they can be plotted in the article using pgfplot.
import pandas as pd
epochs = list(range(len(Modes_flag)))
N = len(decay)
Name = "Fig_SV"
df_full = pd.DataFrame(np.stack((epochs[:N],decay[:N],Modes_flag[:N],(-torch.tensor(error)[:N]).tolist()) ,axis=1), columns=['epochs', 'Decay','Modes',"Loss"])
df_truncated = pd.DataFrame(np.stack((Modes_flag[Zoom_start_index:],(-torch.tensor(error)[Zoom_start_index:]).tolist(), epochs[Zoom_start_index:]) ,axis=1), columns=["Modes_truncated","Loss_truncated","epochs_truncated"])
df_combined = pd.concat([df_full, df_truncated], axis=1)
df_combined = df_combined.astype('float64')
df_combined.to_csv('Results/'+Name+'.csv')
Save trained model#
Save the state dictionary of the trained model
torch.save(ROM_model.state_dict(), 'Pretrained_models/2D_ROM_SV')